Sabtu, 16 Juli 2011

Published Sabtu, Juli 16, 2011 by with 1 comment

Membuat Animasi Lebah Sederhana (Fungsi Timeline) dengan Flash

Tutorial ini saya buat untuk anda yang baru ingin belajar animasi pada program flash, karena kali ini saya akan membahasa tentang timeline yang sangat mendasara dan penting pada pembuatan aplikasi flash. Jendela Timeline  umumnya ada pada bagian atas program, jika tidak muncul coba anda lihat pada window pada bagan bar, apakah timeline tercentang ? jika tidak centang bagian timeline.

Sebelumnya akan delaskan mengenai fungsi timline. Timeline befungsi untuk tempat peletakan setiap layer yang berisi object pada program flash, umumnya kecepatan timline adalah 12 fps (frame per second). Kita dapat, melihatnya di bagian bawah timeline seperti di bawah ini.


Kecepatan ini berpengaruh kepada seberapa cepat pergerakan animasi yang di buat, semakin tinggi nilai Frame rate semakin cepat pergerakan timeline. Untuk mengatur kecepatan tersebut kita tinggal mengubah nilai Fram rate yang ada di panel Properti yang terletak dibagian bawah (Jika tidak muncul klik di bagian luar layer).

Layer- layer pada timeline di bagi 3 yaitu :
  • Layer biasa.
  • Layer Mask.
  • Layer Guide
Untuk penjelasan layer kita bahas ditutorial selanjutnya. Balik ke topik sebelumnya. Untuk pertama kali kita buat suatu object (apasaja), disini saya mencoba membuat membiuat sebuah karakter lebah. 
Saat pertama kali membuat suatu object pasti akan diletakan pada layer 1 frame 1. Buat 1 buah lingkaran besar dan 2 buah lingkaran kecil dengan mengunakan oval tool, seperti gambar dibawah ini :


Sambungkan antara lingkaran kecil dan besar dengan menggunakan line tool. Lakukan penggambaran 1 buah lingkaran besar untuk badan dan 2 buah lingkaran kecil untuk tangan agar tampak seperti dibawah in:


Bentuk mata dan hidungnya. Buat sebuah sayap.


Blok salah satu dari sayap tersebut, lalu klik kanan >> Konvert to Symbol pilih sebagai movie clip. Lalu klik 2 kali pada sayap yang tadi dipilih maka kita akan masuk ke bagian timeline symbol sayap tersebut. Klik kanan pada frame ke2 dan pilih blank keyframe, maka frame k-2 tersebut akan menjadi frame kosong yang siap untuk dimasukan object, gambar kembali sayap yang berbeda yang akan di gunakan sebagai animasi pada saat dijalankan. Lalu lakukan hal yang sama pada sayap yang satunya lagi.
Maka bentuk lebah kita akan seperti ini.


Sudah nampak seperti lebah kan ?. Kini saatnya kita mengerakanya dengan timeline utama. Klik kanan pada frame 15 dan pilih Insert Keyframe, kemudian pilih frame pertama dan pilih Creat Motion Tween. Maka timeline akan terlihat seperti gambar di atas tadi (gambar yang menunjukan kecepatan frame).

Pilih frame pertama dan letakan lebah kita di pojok kiri bawah dan untuk frame ke-15 letakan di pojok kanan atas. Maka ketika di jalankan akan terlihat sepert dibawah ini.



Jika anda belum paham silahkan download file fla nya disini  

Protected by Copyscape Plagiarism Checker
Perhatian : Tutorial ini di proteksi oleh copyscape, bila ingin mengcopy tutorial ini, harap disertai dengan link sumber tutorial ini.
Read More

Jumat, 15 Juli 2011

Published Jumat, Juli 15, 2011 by with 0 comment

Seberapa Luas Tata Surya ?

Seberapa besarkah tatasurya kita? Untuk lebih jelas mengenai tatasurya kita, saksikan video dibawah ini :


Untuk lebih jelas mengenai tata surya klik disini.

Sumber : Youtube
*Catatan: Jika video tidak bisa fullscreen untuk mengatasinya klik kanan pada video pilih Settings dan hilangkan centang pada Eanable Hardware Acceleration.
Read More
Published Jumat, Juli 15, 2011 by with 0 comment

Ketahui Tata Surya Kita

Tata Surya adalah kumpulan benda langit yang terdiri atas sebuah bintang yang disebut Matahari dan semua objek yang terikat oleh gaya gravitasinya. Objek-objek tersebut termasuk delapan buah planet yang sudah diketahui dengan orbit berbentuk elips, lima planet kerdil/katai, 173 satelit alami yang telah diidentifikasi, dan jutaan benda langit (meteor, asteroid, komet) lainnya.

Tata Surya terbagi menjadi Matahari, empat planet bagian dalam, sabuk asteroid, empat planet bagian luar, dan di bagian terluar adalah Sabuk Kuiper dan piringan tersebar. Awan Oort diperkirakan terletak di daerah terjauh yang berjarak sekitar seribu kali di luar bagian yang terluar.

Berdasarkan jaraknya dari matahari, kedelapan planet Tata Surya ialah Merkurius (57,9 juta km), Venus (108 juta km),Bumi (150 juta km), Mars (228 juta km), Yupiter (779 juta km), Saturnus (1.430 juta km), Uranus (2.880 juta km), danNeptunus (4.500 juta km). Sejak pertengahan 2008, ada lima objek angkasa yang diklasifikasikan sebagai planet kerdil. Orbit planet-planet kerdil, kecuali Ceres, berada lebih jauh dari Neptunus. Kelima planet kerdil tersebut ialahCeres (415 juta km. di sabuk asteroid; dulunya diklasifikasikan sebagai planet kelima), Pluto (5.906 juta km.; dulunya diklasifikasikan sebagai planet kesembilan), Haumea (6.450 juta km), Makemake (6.850 juta km), dan Eris (10.100 juta km).

Asal usul Tata Surya

Banyak hipotesis tentang asal usul Tata Surya telah dikemukakan para ahli, di antaranya :

Hipotesis nebula

Hipotesis nebula pertama kali dikemukakan oleh Emanuel Swedenborg (1688-1772) tahun 1734 dan disempurnakan oleh Immanuel Kant (1724-1804) pada tahun 1775. Hipotesis serupa juga dikembangkan oleh Pierre Marquis de Laplace secara independen pada tahun 1796. Hipotesis ini, yang lebih dikenal dengan Hipotesis Nebula Kant-Laplace, menyebutkan bahwa pada tahap awal, Tata Surya masih berupa kabut raksasa. Kabut ini terbentuk dari debu, es, dangas yang disebut nebula, dan unsur gas yang sebagian besar hidrogen. Gaya gravitasi yang dimilikinya menyebabkan kabut itu menyusut dan berputar dengan arah tertentu, suhu kabut memanas, dan akhirnya menjadi bintang raksasa (matahari). Matahari raksasa terus menyusut dan berputar semakin cepat, dan cincin-cincin gas dan es terlontar ke sekeliling matahari. Akibat gaya gravitasi, gas-gas tersebut memadat seiring dengan penurunan suhunya dan membentuk planet dalam dan planet luar. Laplace berpendapat bahwa orbit berbentuk hampir melingkar dari planet-planet merupakan konsekuensi dari pembentukan mereka.

Hipotesis Planetisima.

Hipotesis planetisimal pertama kali dikemukakan oleh Thomas C. Chamberlin dan Forest R. Moulton pada tahun 1900. Hipotesis planetisimal mengatakan bahwa Tata Surya kita terbentuk akibat adanya bintang lain yang lewat cukup dekat dengan matahari, pada masa awal pembentukan matahari. Kedekatan tersebut menyebabkan terjadinya tonjolan pada permukaan matahari, dan bersama proses internal matahari, menarik materi berulang kali dari matahari. Efek gravitasi bintang mengakibatkan terbentuknya dua lengan spiral yang memanjang dari matahari. Sementara sebagian besar materi tertarik kembali, sebagian lain akan tetap di orbit, mendingin dan memadat, dan menjadi benda-benda berukuran kecil yang mereka sebut planetisimal dan beberapa yang besar sebagai protoplanet. Objek-objek tersebut bertabrakan dari waktu ke waktu dan membentuk planet dan bulan, sementara sisa-sisa materi lainnya menjadi komet dan asteroid.Hipotesis Pasang Surut Bintang.

Hipotesis pasang surut bintang

Hipotesis pasang surut bintang pertama kali dikemukakan oleh James Jeans pada tahun 1917. Planet dianggap terbentuk karena mendekatnya bintang lain kepada matahari. Keadaan yang hampir bertabrakan menyebabkan tertariknya sejumlah besar materi dari matahari dan bintang lain tersebut oleh gaya pasang surut bersama mereka, yang kemudian terkondensasi menjadi planet. Namun astronom Harold Jeffreys tahun 1929 membantah bahwa tabrakan yang sedemikian itu hampir tidak mungkin terjadi. Demikian pula astronom Henry Norris Russell mengemukakan keberatannya atas hipotesis tersebut. Hipotesis Kondensasi

Hipotesis kondensasi 

Hipotesis kondensasi mulanya dikemukakan oleh astronom Belanda yang bernama G.P. Kuiper (1905-1973) pada tahun 1950. Hipotesis kondensasi menjelaskan bahwa Tata Surya terbentuk dari bola kabut raksasa yang berputar membentuk cakram raksasa.Hipotesis Bintang Kembar

Hipotesis bintang kembar 

Hipotesis bintang kembar awalnya dikemukakan oleh Fred Hoyle (1915-2001) pada tahun 1956. Hipotesis mengemukakan bahwa dahulunya Tata Surya kita berupa dua bintang yang hampir sama ukurannya dan berdekatan yang salah satunya meledak meninggalkan serpihan-serpihan kecil. Serpihan itu terperangkap oleh gravitasi bintang yang tidak meledak dan mulai mengelilinginya.

Sejarah penemuan

Lima planet terdekat ke Matahari selain Bumi (Merkurius, Venus, Mars, Yupiter dan Saturnus) telah dikenal sejak zaman dahulu karena mereka semua bisa dilihat dengan mata telanjang. Banyak bangsa di dunia ini memiliki nama sendiri untuk masing-masing planet.

Perkembangan ilmu pengetahuan dan teknologi pengamatan pada lima abad lalu membawa manusia untuk memahami benda-benda langit terbebas dari selubung mitologi. Galileo Galilei (1564-1642) dengan teleskop refraktornya mampu menjadikan mata manusia "lebih tajam" dalam mengamati benda langit yang tidak bisa diamati melalui mata telanjang.

Karena teleskop Galileo bisa mengamati lebih tajam, ia bisa melihat berbagai perubahan bentuk penampakan Venus, seperti Venus Sabit atau Venus Purnama sebagai akibat perubahan posisi Venus terhadap Matahari. Penalaran Venus mengitari Matahari makin memperkuat teori heliosentris, yaitu bahwa matahari adalah pusat alam semesta, bukan Bumi, yang sebelumnya digagas oleh Nicolaus Copernicus (1473-1543). Susunan heliosentris adalah Matahari dikelilingi oleh Merkurius hingga Saturnus.

Teleskop Galileo terus disempurnakan oleh ilmuwan lain seperti Christian Huygens (1629-1695) yang menemukan Titan, satelit Saturnus, yang berada hampir 2 kali jarak orbit Bumi-Yupiter.

Perkembangan teleskop juga diimbangi pula dengan perkembangan perhitungan gerak benda-benda langit dan hubungan satu dengan yang lain melalui Johannes Kepler (1571-1630) dengan Hukum Kepler. Dan puncaknya, Sir Isaac Newton (1642-1727) dengan hukum gravitasi. Dengan dua teori perhitungan inilah yang memungkinkan pencarian dan perhitungan benda-benda langit selanjutnya

Pada 1781, William Herschel (1738-1822) menemukan Uranus. Perhitungan cermat orbit Uranus menyimpulkan bahwa planet ini ada yang mengganggu.Neptunus ditemukan pada Agustus 1846. Penemuan Neptunus ternyata tidak cukup menjelaskan gangguan orbit Uranus. Pluto kemudian ditemukan pada1930.

Pada saat Pluto ditemukan, ia hanya diketahui sebagai satu-satunya objek angkasa yang berada setelah Neptunus. Kemudian pada 1978, Charon, satelit yang mengelilingi Pluto ditemukan, sebelumnya sempat dikira sebagai planet yang sebenarnya karena ukurannya tidak berbeda jauh dengan Pluto.

Para astronom kemudian menemukan sekitar 1.000 objek kecil lainnya yang letaknya melampaui Neptunus (disebut objek trans-Neptunus), yang juga mengelilingi Matahari. Di sana mungkin ada sekitar 100.000 objek serupa yang dikenal sebagai Objek Sabuk Kuiper (Sabuk Kuiper adalah bagian dari objek-objek trans-Neptunus). Belasan benda langit termasuk dalam Objek Sabuk Kuiper di antaranya Quaoar (1.250 km pada Juni 2002), Huya (750 km pada Maret 2000), Sedna (1.800 km pada Maret 2004), Orcus, Vesta, Pallas, Hygiea, Varuna, dan 2003 EL61 (1.500 km pada Mei 2004).

Penemuan 2003 EL61 cukup menghebohkan karena Objek Sabuk Kuiper ini diketahui juga memiliki satelit pada Januari 2005 meskipun berukuran lebih kecil dari Pluto. Dan puncaknya adalah penemuan UB 313 (2.700 km pada Oktober 2003) yang diberi nama oleh penemunya Xena. Selain lebih besar dari Pluto, objek ini juga memiliki satelit.

Struktur

Komponen utama sistem Tata Surya adalah matahari, sebuah bintang deret utama kelas G2 yang mengandung 99,86 persen massa dari sistem dan mendominasi seluruh dengan gaya gravitasinya. Yupiter dan Saturnus, dua komponen terbesar yang mengedari matahari, mencakup kira-kira 90 persen massa selebihnya.

Hampir semua objek-objek besar yang mengorbit matahari terletak pada bidang edaran bumi, yang umumnya dinamai ekliptika. Semua planet terletak sangat dekat pada ekliptika, sementara komet dan objek-objek sabuk Kuiper biasanya memiliki beda sudut yang sangat besar dibandingkan ekliptika.

Planet-planet dan objek-objek Tata Surya juga mengorbit mengelilingi matahari berlawanan dengan arah jarum jam jika dilihat dari atas kutub utara matahari, terkecuali Komet Halley.

Hukum Gerakan Planet Kepler menjabarkan bahwa orbit dari objek-objek Tata Surya sekeliling matahari bergerak mengikuti bentuk elips dengan matahari sebagai salah satu titik fokusnya. Objek yang berjarak lebih dekat dari matahari (sumbu semi-mayor-nya lebih kecil) memiliki tahun waktu yang lebih pendek. Pada orbit elips, jarak antara objek dengan matahari bervariasi sepanjang tahun. Jarak terdekat antara objek dengan matahari dinamai perihelion, sedangkan jarak terjauh dari matahari dinamai aphelion. Semua objek Tata Surya bergerak tercepat di titik perihelion dan terlambat di titik aphelion. Orbit planet-planet bisa dibilang hampir berbentuk lingkaran, sedangkan komet, asteroid dan objek sabuk Kuiper kebanyakan orbitnya berbentuk elips.

Untuk mempermudah representasi, kebanyakan diagram Tata Surya menunjukan jarak antara orbit yang sama antara satu dengan lainnya. Pada kenyataannya, dengan beberapa perkecualian, semakin jauh letak sebuah planet atau sabuk dari matahari, semakin besar jarak antara objek itu dengan jalur edaran orbit sebelumnya. Sebagai contoh, Venus terletak sekitar sekitar 0,33 satuan astronomi (SA) lebih dari Merkurius, sedangkan Saturnus adalah 4,3 SA dari Yupiter, dan Neptunus terletak 10,5 SA dari Uranus. Beberapa upaya telah dicoba untuk menentukan korelasi jarak antar orbit ini (hukum Titus-Bode), tetapi sejauh ini tidak satu teori pun telah diterima.

Hampir semua planet-planet di Tata Surya juga memiliki sistem sekunder. Kebanyakan adalah benda pengorbit alami yang disebut satelit, atau bulan. Beberapa benda ini memiliki ukuran lebih besar dari planet. Hampir semua satelit alami yang paling besar terletak di orbit sinkron, dengan satu sisi satelit berpaling ke arah planet induknya secara permanen. Empat planet terbesar juga memliki cincin yang berisi partikel-partikel kecil yang mengorbit secara serempak.

Terminologi

Secara informal, Tata Surya dapat dibagi menjadi tiga daerah. Tata Surya bagian dalam mencakup empat planet kebumian dansabuk asteroid utama. Pada daerah yang lebih jauh, Tata Surya bagian luar, terdapat empat gas planet raksasa. Sejak ditemukannya Sabuk Kuiper, bagian terluar Tata Surya dianggap wilayah berbeda tersendiri yang meliputi semua objek melampaui Neptunus.

Secara dinamis dan fisik, objek yang mengorbit matahari dapat diklasifikasikan dalam tiga golongan: planet, planet kerdil, danbenda kecil Tata Surya. Planet adalah sebuah badan yang mengedari matahari dan mempunyai massa cukup besar untuk membentuk bulatan diri dan telah membersihkan orbitnya dengan menginkorporasikan semua objek-objek kecil di sekitarnya. Dengan definisi ini, Tata Surya memiliki delapan planet: Merkurius, Venus, Bumi, Mars, Yupiter, Saturnus, dan Neptunus. Pluto telah dilepaskan status planetnya karena tidak dapat membersihkan orbitnya dari objek-objek Sabuk Kuiper. Planet kerdil adalah benda angkasa bukan satelit yang mengelilingi matahari, mempunyai massa yang cukup untuk bisa membentuk bulatan diri tetapi belum dapat membersihkan daerah sekitarnya. Menurut definisi ini, Tata Surya memiliki lima buah planet kerdil: Ceres, Pluto, Haumea, Makemake, dan Eris. Objek lain yang mungkin akan diklasifikasikan sebagai planet kerdil adalah:Sedna, Orcus, dan Quaoar. Planet kerdil yang memiliki orbit di daerah trans-Neptunus biasanya disebut "plutoid". Sisa objek-objek lain berikutnya yang mengitari matahari adalah benda kecil Tata Surya.

Ilmuwan ahli planet menggunakan istilah gas, es, dan batu untuk mendeskripsi kelas zat yang terdapat di dalam Tata Surya.Batu digunakan untuk menamai bahan bertitik lebur tinggi (lebih besar dari 500 K), sebagai contoh silikat. Bahan batuan ini sangat umum terdapat di Tata Surya bagian dalam, merupakan komponen pembentuk utama hampir semua planet kebumian dan asteroid. Gas adalah bahan-bahan bertitik lebur rendah seperti atom hidrogen, helium, dan gas mulia, bahan-bahan ini mendominasi wilayah tengah Tata Surya, yang didominasi oleh Yupiter dan Saturnus. Sedangkan es, seperti air, metana,amonia dan karbon dioksida, memiliki titik lebur sekitar ratusan derajat kelvin. Bahan ini merupakan komponen utama dari sebagian besar satelit planet raksasa. Ia juga merupakan komponen utama Uranus dan Neptunus (yang sering disebut "es raksasa"), serta berbagai benda kecil yang terletak di dekat orbit Neptunus.

Istilah volatiles mencakup semua bahan bertitik didih rendah (kurang dari ratusan kelvin), yang termasuk gas dan es; tergantung pada suhunya, 'volatiles' dapat ditemukan sebagai es, cairan, atau gas di berbagai bagian Tata Surya.

Zona planet

Di zona planet dalam, Matahari adalah pusat Tata Surya dan letaknya paling dekat dengan planet Merkurius(jarak dari matahari 57,9 × 106 km, atau 0,39 SA), Venus (108,2 × 106 km, 0,72 SA), Bumi(149,6 × 106 km, 1 SA) dan Mars (227,9 × 106 km, 1,52 SA). Ukuran diameternya antara 4.878 km dan 12.756 km, dengan massa jenis antara 3,95 g/cm3 dan 5,52 g/cm3.

Antara Mars dan Yupiter terdapat daerah yang disebut sabuk asteroid, kumpulan batuan metal dan mineral. Kebanyakan asteroid-asteroid ini hanya berdiameter beberapa kilometer, dan beberapa memiliki diameter 100 km atau lebih. Ceres, bagian dari kumpulan asteroid ini, berukuran sekitar 960 km dan dikategorikan sebagai planet kerdil. Orbit asteroid-asteroid ini sangat eliptis, bahkan beberapa menyimpangi Merkurius (Icarus) dan Uranus (Chiron).

Pada zona planet luar, terdapat planet gas raksasa Yupiter (778,3 × 106 km, 5,2 SA), Uranus(2,875 × 109 km, 19,2 SA) dan Neptunus (4,504 × 109 km, 30,1 SA) dengan massa jenis antara 0,7 g/cm3dan 1,66 g/cm3.

Jarak rata-rata antara planet-planet dengan matahari bisa diperkirakan dengan menggunakan baris matematis Titus-Bode. Regularitas jarak antara jalur edaran orbit-orbit ini kemungkinan merupakan efek resonansi sisa dari awal terbentuknya Tata Surya. Anehnya, planet Neptunus tidak muncul di baris matematis Titus-Bode, yang membuat para pengamat berspekulasi bahwa Neptunus merupakan hasil tabrakan kosmis.

Untuk dapat mengetahui gambaran tentang luas Tata Surya silahkan klik disini 
Read More

Kamis, 14 Juli 2011

Published Kamis, Juli 14, 2011 by with 0 comment

Mengatur Kategori atau Label Postingan

Pemisah kategori atau label pada blog sangat penting, hal ini dapat membantu pengunjung blog dalam mencari tulisan yang mereka inginkan dan juga untuk si pemilik blog dapat mengatur postinganya agar tidak semrawut (acak-acakan).

Pembuatan label atau kategori sangat mudah, disetiap kali kita posting tulasn baru diabawah textarea tempat kita menulis ada menu label tergambar seperti dibawah ini : 



Masukan atau ketik jenis kategori tulisan, lalu terbitkan. Mungkin anda bertanya bagaimana caranya memberi label pada postingan-postingan sebelumnya yang belum di beri label ataupun untuk merubah label dari postingan anda. Untuk menjawab pertanyaan itu pilih :
  • Posting >> Edit Entri, maka akan muncul halaman seperti di bawah ini :


  • Centang judul tulisan yang akan di beri label atau akan di ganti label nya.
  • Klik menu Drop Aksi label pilih label ataupun membuat label baru. 
  • Klik OK.

Semoga tutorial ini bermanfaat..
Read More
Published Kamis, Juli 14, 2011 by with 0 comment

Penjelasan Lubang Hitam (Black Hole)

Lubang hitam adalah sebuah pemusatan massa yang cukup besar sehingga menghasilkan gaya gravitasi yang sangat besar. Gaya gravitasi yang sangat besar ini mencegah apa pun lolos darinya kecuali melalui perilaku terowongan kuantum. Medan gravitasi begitu kuat sehingga kecepatan lepas di dekatnya mendekati kecepatan cahaya. Tak ada sesuatu, termasuk radiasi elektromagnetik yang dapat lolos dari gravitasinya, bahkan cahaya hanya dapat masuk tetapi tidak dapat keluar atau melewatinya, dari sini diperoleh kata "hitam". Istilah "lubang hitam" telah tersebar luas, meskipun ia tidak menunjuk ke sebuah lubang dalam arti biasa, tetapi merupakan sebuah wilayah di angkasa di mana semua tidak dapat kembali. Secara teoritis, lubang hitam dapat memliki ukuran apa pun, dari mikroskopik sampai ke ukuran alam raya yang dapat diamati.

Sejarah Lubang Hitam.

Teori adanya lubang hitam pertama kali diajukan pada abad ke-18 oleh John Michell and Pierre-Simon Laplace, selanjutnya dikembangkan oleh astronom Jerman bernama Karl Schwarzschild, pada tahun 1916, dengan berdasar pada teori relativitas umum dari Albert Einstein, dan semakin dipopulerkan oleh Stephen William Hawking. Pada saat ini banyak astronom yang percaya bahwa hampir semua galaksi dialam semesta ini mengelilingi lubang hitam pada pusat galaksi.
John Archibald Wheeler pada tahun 1967 yang memberikan nama "Lubang Hitam" sehingga menjadi populer di dunia bahkan juga menjadi topik favorit para penulis fiksi ilmiah. Kita tidak dapat melihat lubang hitam akan tetapi kita bisa mendeteksi materi yang tertarik / tersedot ke arahnya. Dengan cara inilah, para astronom mempelajari dan mengidentifikasikan banyak lubang hitam di angkasa lewat observasi yang sangat hati-hati sehingga diperkirakan di angkasa dihiasi oleh jutaan lubang hitam.

Asal-mula lubang hitam

Lubang Hitam tercipta ketika suatu obyek tidak dapat bertahan dari kekuatan tekanan gaya gravitasinya sendiri. Banyak obyek (termasuk matahari dan bumi) tidak akan pernah menjadi lubang hitam. Tekanan gravitasi pada matahari dan bumi tidak mencukupi untuk melampaui kekuatan atom dan nuklir dalam dirinya yang sifatnya melawan tekanan gravitasi. Tetapi sebaliknya untuk obyek yang bermassa sangat besar, tekanan gravitasi-lah yang menang.

Sebenarnya ada teori yang menyebutkan, daya hisap sebuah lubang hitam bisa melemah lalu ia akan masuk ke fase tidur, berhenti memakan benda angkasa. Lubang hitam yang disebut Sagittarius A itu letaknya berada di tengah galaksi Bima Sakti. Scherbakov, astronom dari Pusat Astrofisika Harvard mengatakan, lubang hitam di galaksi Bima Sakti hanya memakan 0,01% bintang di sekelilingnya.

Namun selanjutnya peneliti juga menemukan fakta, lubang hitam senantiasa berevolusi, sehingga bisa jadi akan aktif lagi suatu hari nanti. Semakin banyak ia menelan bintang, semakin cepat pula proses evolusinya. Menurut data yang didapat dari teleskop luar angkasa, selama beberapa tahun terakhir ini, semakin banyak lubang hitam menelan benda angkasa. Selain itu, dikatakan bahwa semakin banyak ia menghisap benda angkasa, semakin besar pula daya sedotnya. Ini dikarenakan peningkatan unsur ion di dalamnya. Namun tidak hanya berevolusi, belakangan juga diketahui lubang-lubang hitam yang ada di berbagai galaksi juga saling bergabung. Berbagai benda angkasa yang masuk ke dalam lubang hitam mengandung banyak energi dalam jumlah besar. Sehingga gabungan antarlubang hitam tentunya juga meningkatkan jumlah energi yang dimilikinya. Energi ini dapat mengendalikan alur keluar masuk gas dan debu ke luar lubang. Tidak hanya debu dan gas, para astronom meyakini bahwa hisapan sebuah lubang hitam juga banyak melepaskan sinar-X dan gelombang radioaktif. Namun jumlah radiasi sinar X yang mereka amati belum dapat dijelaskan. Yang jelas, semuanya itu memengaruhi perkembangan galaksi yang tempat lubang hitam itu berada.

Memahami proses dan cara kerja dan evolusi lubang hitam adalah penting untuk menjelaskan formasi galaksi bima sakti dan keutuhan bumi di masa depan. Mempelajariradiasi dan interaksi antargalaksi dapat membuat kita paham akan besarnya medan gravitasi,gaya magnet, dan proses radiasi lubang hitam. “Kami telah mempelajari data dari teleskop ruang angkasa selama beberapa tahun terakhir, dan menemukan bahwa semakin cepat lubang hitam melahap material angkasa, maka semakin tinggi daya ionisasinya,” ujar David Ballantyne, asisten profesor fisika Georgia Institute of Technology. Ahli fisika angkasa saat ini belum memiliki penjelasan yang cukup mengenai daya sedot lubang hitam dan bagaimana pertumbuhannya atau apa yang membuat lubang hitam tertentu berhenti berkembang. Tapi yang jelas, lubang hitam dan cakram di sekitarnya akan memengaruhi benda-benda langit. “Penghisapan lubang hitam atas benda angkasa melepaskan banyak energi. Tidak hanya radiasi, tapi juga gas yang dilepaskan sampai jauh ke luar galaksi. Gas ini dapat mengubah susunan letak bintang, dan menghentikan perkembangan galaksi,” ujar Ballantyne. “Daya hisap lubang hitam masih terus dipelajari. Ada yang berkembang dan ada juga yang mati. Mempelajari ini penting untuk mengetahui bentuk dan perubahan susunan galaksi kita,” tambah Ballantyne. 

Lubang hitam memang menyedot benda angkasa. Bumi berrisiko ditelan olehnya. Namun risikonya ternyata tidak hanya itu. Gas yang disemburkan dari dalamnya pun dapat membuat benda angkasa bergeser, dan bahkan mungkin bertabrakan.

Untuk melihat video mengenai lubang hitam klik disini. 
Sumber : Wikipedia , Inilah.com.
Read More
Published Kamis, Juli 14, 2011 by with 1 comment

Software Untuk Memproteksi Folder

Mungkin jengkel dengan orang yang suka membuka folder-folder anda apalagi folder itu bersifat pribadi atau rahasia perusahaan. Tak usah khawatir saya punya solusinya, yaitu dengan menggunakan software FolderCostumizerXP.

Dengan software ini kita dapat memprotek folder-folder kita dengan password yang kita inginkan. Kelebihan software ini ringankarena bersifat portabel alias g perlu di-instal.

Yah langsung aja ni di download dan coba sendiri. Semoga bermanfaat...


Read More
Published Kamis, Juli 14, 2011 by with 0 comment

Video : Mr Bean - Takut Dalam Kegelapan.

Nih sambil buat yang udah cape maen Facebook sekali kali nonton film animasi Mr. Bean. Kali ini Mr. Bean yang penakut terpaksa pargi keloteng yang gelap untuk membetulkan saluran air.


Sumber : Youtube
*Catatan: Jika video tidak bisa fullscreen untuk mengatasinya klik kanan pada video pilih Settings dan hilangkan centang pada Eanable Hardware Acceleration.
Read More
Published Kamis, Juli 14, 2011 by with 0 comment

Video : Mr Bean - Parkir Paralel

Mr. Bean yang sedang kesulitan untuk mendapatkan tempat parkir, dan diapun behasil menjahili mobil biru yang ia benci.


Sumber : Youtube
*Catatan: Jika video tidak bisa fullscreen untuk mengatasinya klik kanan pada video pilih Settings dan hilangkan centang pada Eanable Hardware Acceleration.
Read More
Published Kamis, Juli 14, 2011 by with 0 comment

Video : Mr Bean - Sofa baru, Sofa lama

Mr.Bean yang baru saja membeli sofa baru, akhirnya bingung untuk membuang sofa lama.


Sumber : Youtube
*Catatan: Jika video tidak bisa fullscreen untuk mengatasinya klik kanan pada video pilih Settings dan hilangkan centang pada Eanable Hardware Acceleration.
Read More

Rabu, 13 Juli 2011

Published Rabu, Juli 13, 2011 by with 0 comment

Lubang Hitam (Black Hole)

Apakah benar lubang hitam itu ada ? Jika benar ada, apakah benar lubang hitam memakan bintang-bintang di tatasusya ? Dan Lubang hitam pun bisa saja memakan planet-planet ditatasurya kita ini tidak terkecuali planet bumi yang kita tempati ini. Memang bila dibayangkan amat sangat mengerikan lubang hitam itu.

Agar lebih menambah pengetahuan kita tentang apa itu lubang hitam simak video dibawah ini :


Untuk lebih jelas mengenai lubang hitam klik disini.
Sumber : Youtube
*Catatan: Jika video tidak bisa fullscreen untuk mengatasinya klik kanan pada video pilih Settings dan hilangkan centang pada Eanable Hardware Acceleration.
Read More